E2E: An End-to-End Entity Linking System for Short and Noisy Text
نویسندگان
چکیده
We present E2E, an end-to-end entity linking system that is designed for short and noisy text found in microblogs and text messages. Mining and extracting entities from short text is an essential step for many content analysis applications. By jointly optimizing entity recognition and disambiguation as a single task, our system can process short and noisy text robustly.
منابع مشابه
An End-to-End Entity Linking Approach for Tweets
We present a novel approach for detecting, classifying, and linking entities from Twitter posts (tweets). The task is challenging because of the noisy, short, and informal nature of tweets. Consequently, the proposed approach introduces several methods that robustly facilitate successful realization of the task with enhanced performance in several measures.
متن کاملTo Link or Not to Link? A Study on End-to-End Tweet Entity Linking
Information extraction from microblog posts is an important task, as today microblogs capture an unprecedented amount of information and provide a view into the pulse of the world. As the core component of information extraction, we consider the task of Twitter entity linking in this paper. In the current entity linking literature, mention detection and entity disambiguation are frequently cast...
متن کاملAn Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches
Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...
متن کاملE2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text
An end-to-end method for multi-language scene text localization, recognition and script identification is proposed. The approach is based on a set of convolutional neural nets. The method, called E2E-MLT, achieves state-of-theart performance for both joint localization and script identification in natural images and in cropped word script identification. E2E-MLT is the first published multi-lan...
متن کاملEnd-to-End Information Extraction without Token-Level Supervision
Most state-of-the-art information extraction approaches rely on token-level labels to find the areas of interest in text. Unfortunately, these labels are time-consuming and costly to create, and consequently, not available for many real-life IE tasks. To make matters worse, token-level labels are usually not the desired output, but just an intermediary step. End-to-end (E2E) models, which take ...
متن کامل